"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"e.monitor_plot();"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The plot shows the maximum potential loss over time; the dashed line is the maximum loss threshold set for the experiment (default: 0.05).\n",
"\n",
"As the experiment continues, we add more daily data:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"e.add_data(\"20190730\", [ 0, 0], [ 186, 180])\n",
"e.add_data(\"20190731\", [ 7, 1], [ 714, 652])\n",
"e.add_data(\"20190801\", [13, 5], [1233, 1141])\n",
"e.add_data(\"20190802\", [15, 8], [1744, 1681])\n",
"e.add_data(\"20190803\", [21, 13], [2304, 2146])\n",
"e.add_data(\"20190804\", [26, 16], [2835, 2719])\n",
"e.add_data(\"20190805\", [29, 20], [3275, 3260])\n",
"e.add_data(\"20190806\", [36, 23], [3741, 3805])\n",
"e.add_data(\"20190807\", [43, 26], [4343, 4354])\n",
"e.add_data(\"20190808\", [51, 32], [4863, 4921])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And we continue to investigate the result:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAALICAYAAADfUO+3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3wc1bn/8c+jbhV3Sdi4gS2bYsCA6YRmDKZDIARy4ZLqUG7uj5uQhNw0ktybkITkkgbBSQikUBKbFjoxPVSDDRbFhWYbY1vuRZZkSc/vjzOy17Isq+zu7Erf9+u1r92dmZ15Vhh9dWbOnGPujoiISCbIibsAERGRFgolERHJGAolERHJGAolERHJGAolERHJGAolERHJGAol2SUzczP7c8L7PDOrMbP746yrtzCz75vZiXHXIZIOeXEXIFlhEzDezPq4+2ZgMvBhHIWYWZ67N8Zx7FQyMwPM3Ztbr3P378RQkkgs1FKSjnoIOC16fSFwe8sKMysxs5vN7GUzm21mZ0XLR5nZM2b2avQ4Mlo+xMyeNrM5ZlZtZh+Llm9M2Od5ZnZL9PoWM/u5mT0B/NjMRpvZw2b2SrT/vbr75cxsSlTja2Y2M1o20MzuMbPXzewFM9s/Wn5N9H2fNLN3zew/o+U/NrPLE/Z5jZl9JXr91ejn87qZfS/h5/OWmd0AvAoMj75rtZnNNbP/Svj+50WvJ0U/47lRDYXR8vfN7HvRd5ibjJ+JSCzcXQ892n0AG4H9gelAETAHOA64P1r/Q+Ci6HV/YD5QAhQDRdHyKmBW9PorwDej17lAWctxEo55HnBL9PoW4H4gN3o/E6iKXh8GPN5GzcdHdbZ+PNfGtuXAYmCP6P3A6PlXwHej1ycAc6LX1wDPAYXAYGAVkA8cCDyVsN83gRHAScA0wAh/CN4PHAOMApqBw6PtDwYeS/h8/4Tvf170s18MjI2W/wm4Mnr9PvCl6PXlwO/j/nejhx5deej0nXSIu79uZqMIraQHW60+CTjTzK6K3hcRfhkvBX5tZhOAJmBstP5l4GYzywfucfc5HSjh7+7eZGalwJHA38MZLyCEQ+t6nwAmdPDrHQ487e7vRZ9dHS0/Gjg3Wva4mQ0ys37RugfcvR6oN7MVQKW7zzazCjMbSgi6Ne6+KGpJnQTMjj5bSgjpRcAH7v5CtPxdYE8z+xXwAPBoqzrHAe+5+/zo/a3AFcD10fu7oudXgI938LuLZBSFknTGfcB1hFbSoITlBpzr7vMSNzaza4DlwAGEFkIdgLs/bWbHEE4H/tnMfurufwISB2IsanXsTdFzDrDW3dsNHDM7Hvi/NlbVuvuRrTdvdezE5a21bFefsKyJbf8vTSe0anYD7kjYz4/c/aZWNY5i2/fC3deY2QHAyYSwOR/47C7qSdRSU2I9IllF15SkM24Gvu/uc1stfwT4UnSxHjM7MFreD/jIw8X7iwmn6jCzkcAKd/8d8AfgoGj75Wa2t5nlAOe0VYC7rwfeM7NPRPuy6Bd56+2ecPcJbTxaBxLA88CxZrZHtM+B0fKngX+Llh0HrIyO3547gAsIwTQ94efz2aiVh5ntbmYVrT9oZoOBHHefAXw74efS4m1glJmNid5fDDy1i3pEsor+mpIOc/clwC/aWPUDwimk16Ngeh84HbgBmBEFyBNsaxUcB3zVzLYQrlf9e7T8asL1lsVANeE0V1v+DbjRzL5FuJZzB/BaN75XjZlNBe6KAnEFoYfhNcAfzex1oBa4pAP7esPMyoAP3f2jaNmjZrY38HyU2xuBiwgtmkS7R8dr+WPxG632XWdmnyGcuswjnAb9bVe+s0imMndNXSEiIplBp+9ERCRjKJRERCRjKJRERCRjKJRERCRjZEXvuylTpvjDDz8cdxkiIp2xq/vKpA1Z0VJauXJl3CWIiEgaZEUoiYhI76BQEhGRjKFQEhGRjKFQEhGRjKFQEhGRjKFQEhGRjKFQEhGRjKFQEhGRjKFQEhGRjKFQEhGRjKFQEhGRjKFQEhGRjKFQEhGRjKFQEhGRjKFQEhGRjKFQEhGRjKFQEhGRjKFQEhGRjKFQEhGRjKFQEhGRjKFQEhGRjKFQSrbV70H1XXFXISKSlRRKyfbPa2D6Z6BmXtyViIhkHYVSMtVvgPkPh9cv/jbeWkREspBCKZnmPQSNdVC5H7x2B2xeE3dFIiJZRaGUTNUzoO8wOPs3sKUWXv1T3BWJiGQVhVKy1K6GhTNh/Dkw5AAYeTS89Dtoaoy7MhGRrKFQSpa3/gHNW2D8eeH94ZfBusXw9v3x1iUikkUUSslSPQMGjg6tJIBxp0D/kerwICLSCQqlZNiwHN5/BsafC2ZhWU4uHDoVFj0PS+fEW5+ISJZQKCXDm/eAN4dQSnTgRZBfotaSiEgHKZSSoXoGVI6Hir22X96nP0z4VFi/YXk8tYmIZJGUhZKZjTOzOQmP9WZ2pZkNNLPHzGxB9DwgVTWkxdpFsPhFGP/xttcfdik0NcCsm9Nbl4hIFkpZKLn7PHef4O4TgIOBWuBu4GpgprtXATOj99mrZZy7fXcSSoPHQNVJMOsP0FifvrpERLJQuk7fTQLecfcPgLOAW6PltwJnp6mG1KieAbtPhIF77Hybwy6FTTUaqFVEZBfSFUoXALdHryvd/SOA6LmirQ+Y2VQzm2Vms2pqatJUZietXADLXt+xg0Nro0+AwePghRvAPT21iYhkoZSHkpkVAGcCf+/M59x9mrtPdPeJ5eXlqSmuu6pnAAb7ntP+dmZw+KUhwBY9n5bSRESyUTpaSqcAr7p7S/ez5WY2BCB6XpGGGpLPPYTSqKOh75Bdb7//BVDUH164MfW1iYhkqXSE0oVsO3UHcB9wSfT6EuDeNNSQfMurYeX8nfe6a62gGA6+JAw7tHZRamsTEclSKQ0lMysGJgOJV/ivBSab2YJo3bWprCFl5k4Hy4W9z+r4Zw75AmBhoFYREdlBSkPJ3WvdfZC7r0tYtsrdJ7l7VfS8OpU1pIR76Ek3+ngoGdTxz/UfDnufDq/eCg2bUlefiEiW0ogOXbFkFqxbtG1E8M44/HKoWwev3b7rbUVEehmFUldUT4fcQtjr1M5/dvhhMGQCvHgTNDcnvzYRkSymUOqs5iZ4426omgxF/Tr/ebMw19LK+fDu48mvT0QkiymUOuuDf8HG5bBfF07dtdj3HCipgBc0eriISCKFUmdVzwjTUVSd3PV95BXCIZ+HhY9Bzfzk1SYikuUUSp3R2ABv3huuJRUUd29fEz8DuQXw0k3JqU1EpAdQKHXGu0/C5jVd63XXWmlF2M+c22Hz2u7vT0SkB1AodUb1jNC5YfQJydnf4ZfClk0w+8/J2Z+ISJZTKHXUls1hiKC9z4S8guTsc8gBMPIoeHEaNDUmZ58iIllModRRCx6Fho3d63XXlsMuDTfiznswufsVEclCCqWOqp4RunGP+lhy97vXadBvBLyo7uEiIgqljqhbD/MfgX3Phpzc5O47JxcO/UK4/+mj15O7bxGRLKNQ6oh5D0Fj3a5nmO2qgy6G/GK1lkSk11ModUT1DOg3HIYdmpr99xkAEz4Fc/8OG7NzzkMRkWRQKO1K7Wp4Z2YYGignhT+uwy6FpgaY9cfUHUNEJMMplHblrfuguTF1p+5aDK6CMSfCrD+EkSNERHohhdKuVM+AQWPCPUWpdthlYbDXN+5O/bFERDKQQqk9G5bBe8+EVpJZ6o83+gQYPBZevDHMbisi0ssolNrzxj2Ap/7UXYucHDjsi7B0Nix+MT3HFBHJIAql9lTPgMr9oHxc+o55wIVhfL0XbkzfMUVEMoRCaWfWfABLXoLxH0/vcQtK4KB/h7f+AeuWpPfYIiIxUyjtzBt3hed0hxLAoVMBh5d+l/5ji4jESKG0M9UzYPeJMGBU+o/dfwTsdTq8cgs0bEr/8UVEYqJQakvNfFg2N/kjgnfG4ZdB3Vp4/c74ahARSTOFUluqZwAG+5wdXw0jjoDd9ocXb1L3cBHpNRRKrbmHUBp1NPQdEl8dZqG1VPM2vPtEfHWIiKSRQqm1ZXNh1YL03ZvUnvHnQkk5vKDRw0Wkd1AotVY9A3LywrTnccsrhImfgwWPwMqFcVcjIpJyKQ0lM+tvZtPN7G0ze8vMjjCzgWb2mJktiJ4HpLKGTnGH6rtgz+OhZFDc1QQTPws5+fDSTXFXIiKScqluKf0CeNjd9wIOAN4CrgZmunsVMDN6nxmWvAzrFsXb6661sspwGm/ObVC3Lu5qRERSKmWhZGZ9gWOAPwC4e4O7rwXOAm6NNrsViLGLWyvVMyC3EMadGncl2zv8UmjYCLP/EnclIiIplcqW0p5ADfBHM5ttZr83sxKg0t0/AoieK9r6sJlNNbNZZjarpqYmhWVGmpvClBFjT4Kivqk/XmcMPTB0EX/xt6FOEZEeKpWhlAccBNzo7gcCm+jEqTp3n+buE919Ynl5eapq3Ob9Z8NcRuMz6NRdosMuhbWLYN5DcVciIpIyqQylJcASd2+Zg2E6IaSWm9kQgOh5RQpr6LjqGVBQClUnxV1J2/Y6HfoND60lEZEeKmWh5O7LgMVm1jLvwyTgTeA+4JJo2SXAvamqocMaG+DNe8O1pILiuKtpW24eHPJ5eP8ZWFYddzUiIimR6t53XwL+amavAxOAHwLXApPNbAEwOXofr3efCOPMZcINs+056N8hvzjMTCsi0gPlpXLn7j4HmNjGqkmpPG6nVc+Aov5hOvJMVjwQDrgAZv8VTvwelAyOuyIRkaTSiA5bNsPbD8A+Z0JeQdzV7Nphl0JTPcz6Y9yViIgknUJp/iPhHqBMP3XXonxcaNG9/PtwLUxEpAdRKFXPgJIKGPWxuCvpuMMvh43LQucMEZEepHeHUt16WPAo7HsO5OTGXU3HjZ4Eg8bACzdoriUR6VF6dyjNexAa67Ln1F2LnJxwbWnpq2G8PhGRHqJ3h1L1DOg3AoYfGnclnXfAhVDYD15Q93AR6Tl6byjVroZ3Hofx54RZXrNNYSkcdHG4rrTuw7irERFJit4bSm/eC82N2XfqLtGhUwEPPfFERHqA3htK1TNCZ4Hd9o+7kq4bMDIMjfTKH6GhNu5qRES6rXeG0oZlYVTw8edl56m7RIdfBpvXwNy/xV2JiEi39c5QeuNuwGH8x+OupPtGHgWV+8ELv1X3cBHJer0zlKpnhF/k5eN2vW2mMwutpZq34L2n4q5GRKRbel8orXk/3NuzXxZ3cGht/LlQPFjdw0Uk6/W+UHrj7vC8bw84ddcivwgmfjaM47fqnbirERHpst4XSnNnwLBDQs+1nuSQz0FuPsz8vq4tiUjW6l2hVDMPls8Nve56mrLd4Lir4c17YO7f465GRKRLelcoVd8FGOx7dtyVpMZRV8Lww+GBq2Dt4rirERHptN4TSu5QPR1GHR1aFT1RTi6c81vwJrjnMmhujrsiEZFO6T2htOx1WLUQ9uuBp+4SDdwDplwL7z8TprYQEckivSeUqmdATh7sfWbclaTegRfBuNNg5vdg+ZtxVyMi0mG9I5Sam8P1pNEnQPHAuKtJPTM44xdQ1A/umgqN9XFXJCLSIb0jlJa8DOsWZ/eI4J1VWg5n/jr0Nnzif+OuRkSkQ3pHKFXPgLyiMKJ2bzJuChz8afjXL+H9f8VdjYjILvX8UGpuCqM4VJ0ERX3jrib9Tvrf0Pnh7kuhbn3c1YiItKvnh9L7z8CmFb3r1F2iwlI4ZxqsXwIPfT3uakRE2tXzQ6l6BhSUwtiT464kPsMPgY9dBa/dFmbcFRHJUD07lBob4M37YK/TIL9P3NXE69ivwdAD4R9XhkkORUQyUI8MpfrGJl58dxUrX3sI6tb23lN3iXLz4eO/gy2b4d7/0KCtIpKRUhpKZva+mc01szlmNitaNtDMHjOzBdHzgGQft7a+iU9Oe4E1L90OfQbAnscn+xDZaXAVnPQDWPgYzPpD3NWIiOwgHS2l4919grtPjN5fDcx09ypgZvQ+qQaUFLB7CQyveTKM4JBXkOxDZK9DPg+jJ8Ej34KVC+OuRkRkO3GcvjsLuDV6fSuQkiG7z+/3BkXNm3XqrjUzOOs3YWLAu74ATVvirkhEZKtUh5IDj5rZK2Y2NVpW6e4fAUTPFak48OSmZ6nx/vjIo1Kx++zWdwicfj0sfRWevi7uakREtkp1KB3l7gcBpwBXmNkxHf2gmU01s1lmNqumpqZzR61bz7gNz3N/02F8tEEtgTbtezbsfwE8/VNYMivuakREgBSHkrsvjZ5XAHcDhwLLzWwIQPS8YiefnebuE919Ynl5eScP3MzS/b/E9KZjWbBiY3e+Qs926k+g79AwaGvDprirERFJXSiZWYmZlbW8Bk4CqoH7gEuizS4Bkn83Z5/+lEy+mjd8FAuWb0j67nuMon5hUsDV78Kj34q7GhGRlLaUKoFnzew14CXgAXd/GLgWmGxmC4DJ0fukG1hSwKCSAhYsV0upXaOOhiP/A2bdDPMfjbsaEenl8lK1Y3d/FzigjeWrgEmpOm6iqspS5q9QS2mXTvg2LHwc7r0CLn8BSgbFXZGI9FI9ckSHFlUVZSxcvhHX6AXtyyuEj08Lo1/84z812oOIxKZnh1JlKRvqG1m+XjOv7tJu40OL6e37Yc5tcVcjIr1Uzw6lijIA5quzQ8cccQWMPDpMcbHm/birEZFeqGeHUmUpgLqFd1ROLpxzYxj14e5LwwSJIiJp1KNDaVBJAQOK81mozg4d138EnPpTWPQ8PPfLuKsRkV6mR4eSmVFVWcZ8dQvvnP0/CfucBY//L3z0etzViEgv0qNDCaCqopQFyzeoB15nmIWx8YoHhdEettTFXZGI9BI9PpTGVpaxvq6Rmg3qgdcpxQPh7N9AzVsw8/txVyMivUSPD6WqitDZQafwumDMiXDIF+CF38C7T8ZdjYj0Aj0+lMZs7YGnzg5dMvn7MKgK7rkcNq+JuxoR6eF6fCiVlxbSvzhf3cK7qqA4jPawcTk8+NW4qxGRHq7Hh5KZbe3sIF20+0Fw7Ndh7t9h7vS4qxGRHqzHhxLAmIrQLVw98Lrh6C/D7hPhgS/D+qVxVyMiPVSvCKWxlaWs27yFlRsb4i4le+XmhdN4TVvgnsuguTnuikSkB+oVodQyBp5O4XXToNFw8g9DT7yXpsVdjYj0QL0jlDQGXvIc/GmoOhn++V1Y8Xbc1YhID9MrQqmirJC+RXkaLTwZzODMX0FBCdz1BWjUKVERSZ5eEUotY+CppZQkZZVwxi9h2evwVEpmsxeRXqpXhBKEkR0WKpSSZ+/T4cCL4Nn/g0UvxF2NiPQQvSeUKstYvamBlRs1Bl7STLkW+g2Hu78I9To1KiLd13tCKRoDb4HGwEuewrLQTXztInj46rirEZEeoPeEUtQDTxP+JdmIw+Ho/4LZf4FZf4y7GhHJcr0mlHbrW0RZYZ5GC0+F4/4bxkyGB74C7zwRdzUiksV6TSiZGWMqSzVaeCrk5sF5N0P5OPjbJVAzP+6KRCRL9ZpQAvXAS6mivnDhHZBXALedD5tWxV2RiGShXhVKYyvLWLmxgdWbdMNnSgwYCRfcFgZsvfMiaFRPRxHpnF4VSmO29sDTKbyUGX4onH0DLHoO/nElaGR2EemEXhVKYyujgVl1Ci+19jsPjvsGvHZbuLlWRKSD8jq6oZmVuPumVBaTakP6FVFSkKuWUjoc+3VYuQBmfi+MLr7PWXFXJCJZYJctJTM70szeBN6K3h9gZjd09ABmlmtms83s/uj9QDN7zMwWRM8Dulx9J4UeeBoDLy3M4KzfwLBD4a4vwoevxl2RiGSBjpy++z/gZGAVgLu/BhzTiWP8P6JAi1wNzHT3KmBm9D5txlaUKpTSJb8ILvgrlJTD7RfCug/jrkhEMlyHrim5++JWi5o68jkzGwacBvw+YfFZwK3R61uBszuyr2SpqiylZkM9a2vVAy8tSivgU3dCwya4/ZNQrz8IRGTnOhJKi83sSMDNrMDMrmL7lk97rge+BiTOnV3p7h8BRM8VbX3QzKaa2Swzm1VTU9PBw+3a1llo1VpKn8p94BO3wPI3whxMzR36m0ZEeqGOhNKlwBXA7sASYEL0vl1mdjqwwt1f6Uph7j7N3Se6+8Ty8vKu7KJNLWPgacK/NKs6Eab8GOY9GGatFRFpwy5737n7SuDfurDvo4AzzexUoAjoa2Z/AZab2RB3/8jMhgArurDvLhvarw/FBbkaLTwOh02FlfPhuV/BoCo4+JK4K5Js0XK/m1m8dUjK7TKUzOyPwA53QLr7Z9v7nLt/A/hGtI/jgKvc/SIz+ylwCXBt9Hxv58vuupwcY4yGG4rPlGth9bvwwJdhwCjY89i4K5JMtWklLJwJCx4Jz+4w9AAYMgGGHghDJ8CAPRRUPUxH7lO6P+F1EXAOsLQbx7wW+JuZfQ5YBHyiG/vqkqqKMp5ZkLzrVNIJuXnwiT/CH06Cv10Mn38cBo+JuyrJBM3NsOw1WPAYzH8EPnwF8NB7c9ypoTfn0jnw4m+hKeqoVNQvCqkoqIZMCH/sKKiylnknh4Exsxzgn+5+QmpK2tHEiRN91qxZSdvfb596h2sfepvXvnMS/Yrzk7Zf6YQ178PvJoWBXD8/E4oHxl2RxKFuXZjuZMFjsPAx2LgcMNj9IKg6Gaomh6DJSbj83dgANW/B0tkhpJbODp1omreE9UX9t7WkWoKq/4g4gkrJ2AUdHtEhQRUwItmFpFPLLLQLazZw8Ej9MozFgFFh8NZbT4c7L4aL7w4jjEvP5g41b8OCR0MQLXoemhtDi2f0JBh7cngubadzU14BDDkgPA6OljXWw4o3t4XUR3PguV9vC6o+A7cPqaEToN9wtagyUEeuKW0gXFOy6HkZ8PUU15VSLWPgzV++UaEUpxGHhVEf7voCPPBfcOav9UuiJ2qohfee3hZE6xaF5ZXj4cgvhRbRsEPCqd2uyiuMWkcHAp8JyxrrQwuqJaSWzoZ//SKEIEDxoO2vTw09EPrurn+DMetI77uydBSSTrv370NRfo564GWC/c+HVQvhqR+HHnlHXxl3RZIMq98LAbTgEXjvGWiqh/wS2PM4+NiXw2m5fsNSW0NeYTgNuPtB25ZtqQtB9dHs6PTfa2HQYI/unSsevOOpv75DFVRptNNQMrODdrYOwN2zdjCzlh54moU2Qxz3jTB46z+vCYO37n1G3BVJZzU2hOlKWjoprFoQlg8cDYd8LoTQyKNCUMQpvwiGHRweLbZs3taiajn9987j24KqpAI++ZfQspeUa6+l9LN21jmQto4OqTC2oozn3tHsqBnBLMzBtHYR3DUVPvNQ+EtVMtv6pVFr6FF490lo2Ai5BTDqaDjk8yGIBo2Ou8pdy+8DwyaGR4uGWlhevS2k+g+Pr75eZqeh5O7Hp7OQdBtTWcpdsz9kfd0W+hapB17s8vuEjg+/nwS3XwBfeDycNpHM4Q5LXob5D4cgWjY3LO87DPb7ROiksMcxUFASb53JUFAcJqwcfmjclfQ6HbqyaGbjgX0I9ykB4O5/SlVR6dAyBt7CFRs5aETaZs+Q9pRVwoV3wM0nw22fhM8+3DN+wfUEG2vgvi/B/IfAcmHE4XDiNaGTQsXeuuYiSdOR3nffBY4jhNKDwCnAs0BWh9LYym1ToyuUMshu4+G8m0Nr6a6pcP6ft79HRdJv/iNw7xVQtx4m/wAOuhj66P8ZSY2O/N9+HjAJWObunwEOAGK+Wtl9wwYUU5inHngZaezJcPIP4e37w8y1Eo+GWrj/y3Db+VBaCVOfhKP+U4EkKdWR03d17t5sZo1m1pcwgOqeKa4r5XK39sBTKGWkwy4NPfL+dT0MroIDL4q7om221IX7btZ+APt/MoxK0dN8+Gpoqa5aGO4lOuHb8feck16hvS7hvwZuB14ys/7A74BXgI3AS+kpL7WqKkp56b3VcZchbTGDU34cBm/9x/+D/iNhj4/FV8/GFeE01vyHQ3fhLbVh+VM/CddWDriwZ5xmbG6CZ38OT14bWkf/fq8GzZW0aq+ltAC4DhhKCKLbgclAX3d/PQ21pVxVZRn3zFnKhrotlKkHXubJzQ+TA24dvHVm+roYu4dha+Y9FIJoySzAwx3/Ez4FY0+BwjJ49Jtw7+Uw6w9wyk+271acbda8D3d9ERa/AOPPhdN+plN1kna7HJDVzEYCF0SPIkI43e7uC1JfXpDsAVlbPPrGMqb++RXuueIoJgzvn/T9S5Ksfg9+d0IYtPVzj6Vu8NbGBvjgWZj3cOhltjYaDmfoQTDuFBg7BXbbb/ueZs3NMPdv8Nh3YeOy0GI68Roo2y01NaaCO7x2Ozz4tfDdTvs57J/2wft7InVJ7IJOjRJuZgcCNwP7u3tuyqpqJVWh9N7KTRx/3ZP85Lz9OX+ibo7LaB88D386E4YfBhfdlbzBW2tXh3tu5j0U5uxp2AB5RbDn8TBuSujy3HfIrvdTvwGevg5euCHcQHrMVXD45Zl/HaZ2Ndx/Jbx5bxhx4ZzfhhG1JRkUSl3QkS7h+cAUQktpEvAU0CO6RI0YWExBXo4m/MsGI4+AM38Fd38xTBB45q+6dm+Me+hAMf+h0CJa/AJ4c7h+Mv7joUW0x7Hh5snOKCyDyd+Dg/4dHvlmGDLp1T+FXoRjp2TmfTzvPA73XB4m0zvxe6FDQ07a/tYUaVN7HR0mAxcCpxE6NtwBTHX3TWmqLeVyc4zR5aXMX64x8LLCAReEQHnmOigfF36JdkRTY5giYf7DoUW0+p2wvHI/+NhVoUU05MDkdFQYNBo+dQcs/Cc8/I1wv9WYE+HkH0H52O7vPxm2bIZ/fg9evBEGj4NP3RmmgRDJAO21lP4buI0wjXmP7aJWVVHKKx+sibsM6ajjvxm6KT/6bRi4J+x1WtvbbV4bgmH+w2F8trq14bTaHsfA4ZeF1ksqxzMbcyJcdiy8NC30ZLvxiNDN/divhbmD4rJsLsz4Qpgk79AvhtZdfp/46hFppdeOfdeiqqKU+15byqb6RkoKuzGfi6RHTg6cfWPohDDj82Eoopa/8le/u62TwgfPhXlzigeF4Bo7BUYfH06zpUtuPhxxBex3frgJ+PnfwOt3wqTvwISL0qvj+RYAACAASURBVNuFvLkZnv81PP6D0KPuohkhOEUyTKenQ49Dqjo6ADxcvYxL//IK915xFAeoB1722LAsTKfuzaGn2PxHwoymAOV7Rb3lTgldtDPlOsnS2fDQ12Hxi2GenlN+kp7pENYtgbsvhfefgb1OhzN+CSWDUn9cycALiZmv1zcNqlrGwFuxUaGUTcp2C9dubp4SWiAjj4SDPx1aRAP3iLu6tg09ED77CMz9Ozz2Hbj5pNCKmvy91I2IPnd6GCrIm8IsvxP+LTM7XYhEen0ojRxYTEFujib8y0a77QdfeiV04e6TJX9QmIXZdsedGkZOeO5X8PYDcMxX4PArwiR0ybB5LTx4VQjAYYfCx28K1+BEMlwPGBele/Jyc9izvEQDs2arst2yJ5ASFZaGa0tXvBSudc38PtxwWAio7p5Sf+8ZuPEoqL4rdAz5zEMKJMkavT6UAE2NLvEZuAdc8Fe4+G7ILYQ7PgV/Pgdq5nV+X4314bTgrWeEm3Y/91jo7Zfb60+ISBZRKBEm/FuyZjO1DY1xlyK91egT4LJ/wZRrwwjdNxwBD10dTsN1xIq3QsePf/0iXFu79BkYdnBKSxZJBYUSYcI/d3hnRY+5L1iyUW5+uIfqP18NE+m9+Fv41UHwyi1h9O62NDfDC7+Fm46FDR+FmXvPuF4z9krWUiiR2ANPp/AkA5QMhjN+AV98CgaPDVN3TDsOFr2w/XbrP4K/ngsPfx32PA4ufz50hRfJYgolYOSgEvJzTRP+SWYZckDopHDuH8L4dDefDNM/B+s+hDfvC6NEfPB8GNX7U3dCaUXcFYt0m66AAvm5OewxuIQFGgNPMo0Z7HdeaAE9+3/wr1/CW/dBU0O47+njvwsz84r0ECkLJTMrAp4GCqPjTHf375rZQOBOYBTwPnC+u8c++FxVRRnVS9fFXYZI2wpK4IRvhWnhn/hR6LX3sa+E61AiPUgqT9/VAye4+wHABGCKmR0OXA3MdPcqYGb0PnZjKkpZtLqWui07uaAskgkGjAo3wh53tQJJeqSUhZIHLRdp8qOHA2cBt0bLbwXOTlUNnTG2sgx3NLeSiEiMUtrRwcxyzWwOsAJ4zN1fBCrd/SOA6Dkjrs629MBTKImIxCeloeTuTe4+ARgGHGpm4zv6WTObamazzGxWTU1N6oqMjBpUQl6OacI/EZEYpaVLuLuvBZ4kTKu+3MyGAETPK3bymWnuPtHdJ5aXl6e8xoK8HEYNLlG3cBGRGKUslMys3Mz6R6/7ACcCbwP3AZdEm10C3JuqGjqrqqJUp+9ERGKUyvuUhgC3mlkuIfz+5u73m9nzwN/M7HPAIuATKayhU6oqy3jkjWXUbWmiKD9DJoYTEelFUhZK7v46cGAby1cBk1J13O6oqiil2eHdmk3sM7Rv3OWIiPQ6GmYogcbAExGJl0IpwR6DS8jNMU34JyISE4VSgsK8XEYOKlZLSUQkJgqlVqoqStUtXEQkJgqlVsZWlvHBqlrqGzUGnohIuimUWhlTUUpTs/PeSs1CKyKSbgqlVqoqygDU2UFEJAYKpVb2LC8hx9CEfyIiMVAotVKUn8vIQRoDT0QkDgqlNoxRDzwRkVgolNowtrKU91duoqGxOe5SRER6FYVSG6oqymhsdt5fpR54IiLppFBqw5iKaAw89cATEUkrhVIbxlSUYoZmoRURSTOFUhuK8nMZMbBYE/6JiKSZQmknqirK1FISEUkzhdJOVFWW8t7KTWxpUg88EZF0USjtRFVFKY3NzgfqgScikjYKpZ0YWxnGwJuvHngiImmjUNqJ0eWhB566hYuIpI9CaSf6FOQybEAfzUIrIpJGCqV2jK0oU0tJRCSNFErtGFNZyrsrN9KoHngiImmhUGpHVUUZW5qcD1bXxl2KiEivoFBqx9jKljHwdF1JRCQdFErtGF2ugVlFRNJJodSOksI8du/fRxP+iYikiUJpF8ZWlmoMPBGRNFEo7UJVZRnvrtykHngiImmQslAys+Fm9oSZvWVmb5jZ/4uWDzSzx8xsQfQ8IFU1JMOYilIaGptZvGZz3KWIiPR4qWwpNQJfcfe9gcOBK8xsH+BqYKa7VwEzo/cZa9sYeDqFJyKSaikLJXf/yN1fjV5vAN4CdgfOAm6NNrsVODtVNSRDy9TomvBPRCT10nJNycxGAQcCLwKV7v4RhOACKnbymalmNsvMZtXU1KSjzDaVFuYxtF+RWkoiImmQ8lAys1JgBnClu6/v6OfcfZq7T3T3ieXl5akrsAOqKjUGnohIOqQ0lMwsnxBIf3X3u6LFy81sSLR+CLAilTUkQ1VFKe/UbKSp2eMuRUSkR0tl7zsD/gC85e4/T1h1H3BJ9PoS4N5U1ZAsYyvLqG9sZrHGwBMRSalUtpSOAi4GTjCzOdHjVOBaYLKZLQAmR+8z2piWMfDU2UFEJKXyUrVjd38WsJ2snpSq46ZCSw+8BSs2MHmfypirERHpuTSiQwf0LcpnSL8idXYQEUkxhVIHjako1dToIiIpplDqoKqKMhau2EizeuCJiKSMQqmDxlaWUrelmSUaA09EJGUUSh1UVbmts4OIiKSGQqmDxlSEgVnVLVxEJHUUSh3Ur08+lX0LNQaeiEgKKZQ6oaWzg4iIpIZCqRPGVJSqB56ISAoplDphbGUZtQ1NfLhWPfBERFJBodQJLT3wdApPRCQ1FEqdUBWNgafODiIiqaFQ6oT+xQWUlxWqW7iISIoolDqpqqJUoSQikiIKpU6qqihl4fINuKsHnohIsimUOqmqsoxNDU0sXVcXdykiIj2OQqmTWjo7LFBnBxGRpFModVJVZTQGnib8ExFJOoVSJw0sKWBwaYFGCxcRSQGFUheMUQ88EZGUUCh1wdjKMhYu36geeCIiSaZQ6oKqilI21DeybL164ImIJJNCqQu2Tvinzg4iIkmlUOqCsZUaA09EJBUUSl0wqLSQgSUFGi1cRCTJFEpdpB54IiLJp1DqorGVpczXGHgiIkmlUOqiqooyNtQ1smJDfdyliIj0GCkLJTO72cxWmFl1wrKBZvaYmS2Ingek6viptm0MPJ3CExFJllS2lG4BprRadjUw092rgJnR+6zUMgaeeuCJiCRPykLJ3Z8GVrdafBZwa/T6VuDsVB0/1QaXFtC/OF+dHUREkijd15Qq3f0jgOi5YmcbmtlUM5tlZrNqamrSVmBHmVmYhVYtJRGRpMnYjg7uPs3dJ7r7xPLy8rjLaVNVZRkLVmgMPBGRZEl3KC03syEA0fOKNB8/qaoqSlm3eQs1G9UDT0QkGdIdSvcBl0SvLwHuTfPxk6pKY+CJiCRVKruE3w48D4wzsyVm9jngWmCymS0AJkfvs1bLGHi6riQikhx5qdqxu1+4k1WTUnXMdCsvK6RvUZ564ImIJEnGdnTIBmYWOjvo9J2ISFIolLppbGUp81doDDwRkWRQKHXTmIoy1tZuYdWmhrhLERHJegqlbtKEfyIiyaNQ6qaWbuGa8E9EpPsUSt1U2beQssI8dXYQEUkChVI3hR54pTp9JyKSBAqlJKiqKNPpOxGRJFAoJUFVZSmrNjWwSmPgiYh0i0IpCVom/NPIDiIi3aNQSoKtU6MrlEREukWhlARD+hVRWpingVlFRLrJsmF4nLKyMj/44IO3W3b++edz+eWXU1tby6mnnrrDZz796U/z6U9/mpUrV3LeeeftsP6yyy7jk5/8JIsXL+biiy/eYf1XvvIVzjjjDObNm8cXv/jFHdZ/61vf4sQTT2TOnDlceeWVVH+4jpwcY58hfQH44Q9/yJFHHslzzz3Hf//3f+/w+euvv54JEybwz3/+k//5n//ZYf1NN93EuHHj+Mc//sHPfvazHdb/+c9/Zvjw4dx5553ceOONO6yfPn06gwcP5pZbbuGWW27ZYf2DDz5IcXExN9xwA3/72992WP/kk08CcN1113H//fdvt65Pnz489NBDAPzgBz9g5syZ260fNGgQM2bMAOAb3/gGzz///Hbrhw0bxl/+8hcArrzySubMmbPd+rFjxzJt2jQApk6dyvz587dbP2HCBK6//noALrroIpYsWbLd+iOOOIIf/ehHAJx77rmsWrVqu/WTJk3i29/+NgCnnHIKmzdv3m796aefzlVXXQXAcccdR2uZ9m+vNf3by4x/e4Dt8OVkl9RSSpI+BblsbmiKuwwRkayWFS2liRMn+qxZs+Iuo13Tnn6HHz74NrO/PZkBJQVxlyMi8VNLqQvUUkoS9cATEek+hVKSbOuBp84OIiJdpVBKkqH9+lBckKsx8EREukGhlCQ5OUZVRalaSiIi3aBQSqIxFZoaXUSkOxRKSVRVWcqKDfWsq90SdykiIlkpL+4CepKWWWgXrNjAxFEDY64ms7k7dVua2dTQSG19ExvrG6ltaGRTQxOb6hvZVN9IbUPC8vqmrcs2NTRG2zRR29DIwJICRpeXMrqilDHR8/ABfcjL1d9cItlGoZRELbPQLlixsVeE0qb6RhavqWXx6s0sW19HbRQmmxpCWGysb6K2vjEKlm1hUlsfXjd38Ba53ByjpCCXksK88CjIpbggj6H9C+hTkEvNhjqenF/D31/Zdnd9fq4xalBJFFYljKkoZXR5KXuWl1JaqH/2IplK/3cm0e79+9AnP7fHTPjX0NjM0rWbtwZPeI4eazazelPDDp8xg5KCPIoLciktzKO4MARIeVkhIwuKKSmIgiVaXho9lxSG0Nn6OtquuCCXwrwczHZ9H+K6zVt4t2Yj79Rs4p2ajSxcsZH5Kzbw2FvLaUpIwN36FjG6Igqs6DGmopTKvoUdOo6IpI5CKYlycowxFaVZM+Ffc7OzYkN9QthsC54lazbz0brN27Vm8nON3fv3YfjAYk4e2o8RA4sZPrAPwwcUh0Fpi/Lok58b2y/2fn3yOXDEAA4cMWC75Q2NzSxaXcs7NRu3htU7NZu4+9UP2VDfuHW7koJcRle0BFXJ1lOCIwcVU5iXm+6vI9IrKZSSrKqilEfeWMYVt71KcX4ufQqiR34uxQW59CnIS3idsDzatjhaX5TfsdbBrqyr3cKi1bXbgieh1bNkzWYaGpu32363vkUMH9iHw/YYyLCBxQwfEEJoxMBiKvsWkZuTfS2JgrwcxlSE1lAid6dmQz0LW1pXK0JovfjuKu6e/eHW7XJzjBEDi7cFVXRKcNiAYprdaWhsZktTMw2NHp6bmtnSGD03JaxvatkuPG+3bus23mqbsKyhsYktCev69slnZPTfZcSg6HlgMQNLCtTak6ymse+S7Kn5NVz3yDw2NTRS19BE7ZYmahuadvjl3xFthtfW13kURcuKC3Ipyg+PVRvrtwueDXWN2+2zX5/8ra2bEQOLtwue3fv3oShfLQII18veWxlOA76zYmMIrhWbeG/lJhqaOv/fsj35uUZBbg75eTnk5+ZQkJtDQV4O+blGfm60LC8sz8818nJzWFvbwAeralmxYfvZjksL8xg+sDgEVkJYjRxUzND+fchX54900l8HXaBQSpOmZmfzliY2N4RH7ZbGra83R8G1/evGba+jzyW+3rYsbFe3JfyiLMzLYXhC0AwfUByeB4b3fYvyY/5JZLemZmfJmnAqcOnaOvJyLAqQlvAwCnJzQ6DkJQZMzrbwabWsOy2bzQ1NLF5Ty6JVtSxave3xwapNLG7VEs7NMYb2L4qCqmS7wBo+sJh+ffRvI8kUSl2gUOohmpudusamWK/pSGZpbnaWb6hrI7DCqdxVrTqq9C/O3xpUiWE1clAJu2XpqduY6QfWBbGEkplNAX4B5AK/d/dr29teoSSSfBvqtrB49eYorDZtF1hL1mymMaGXS0FuDsMG9GFo/z4Jp4tzouufuRRG74vytq0rSlhWmJ+79Vppy6nmlnU5PTfseuwXS6W0d3Qws1zgN8BkYAnwspnd5+5vprsWkd6srCiffYbms8/Qvjusa2xq5qN1dSxeXcsHLa2sVbV8uHYzKzfWUxedMq5rbNr6uqsKcnMobBViRVGIFSaEWH6OgYFhmEFOwutwcsDCsu22CblgrT9nRvQRrI3PtaxvWfaJicMY2r9Pl7+jdFwcve8OBRa6+7sAZnYHcBagUBLJEHm50bXJgcUc2YHt3Z36xuZtYbWlKQqslmWtXzdR12r7+oTtN0fbbKhrpGZDPfVRb8SWEzvujgPN7riDQ3iOlm97DtuwdZsdP0e0TevPJTpqzCCFUprEEUq7A4sT3i8BDmu9kZlNBaYCjBgxIj2ViUiXmNnWFk1P4QnB1XPPMGaeOPqHtvWfd4cLW+4+zd0nuvvE8vLyNJQlIrKNmZGTY+TmdK+HpHROHKG0BBie8H4YsDSGOkREJMPEEUovA1VmtoeZFQAXAPfFUIeIiGSYtF9TcvdGM/sP4BFCl/Cb3f2NdNchIiKZJ5ax79z9QeDBOI4tIiKZSwNhiYhIxlAoiYhIxlAoiYhIxlAoiYhIxlAoiYhIxlAoiYhIxlAoiYhIxlAoiYhIxsiKmWfNrAb4oAsfHQysTHI5mXzcOI+t79w7jq3v3HEr3X1Ksovp6bIilLrKzGa5+8Tectw4j63v3DuOre8sqabTdyIikjEUSiIiPZiZPWlmJ7dadqWZ3dDBz3/fzE7s4rEnmNmpnflMTw+lab3suHEeW9+5dxxb3zn73E6YIijRBdHydplZrrt/x93/2cVjTwA6FUo9+pqSiEhvZ2aDgLeBYe5eb2ajgKeBB4BDgD7AdHf/brT9+8DNwEnAr4EpwP3uPt3MvgOcEX3mOeCL7u5m9iTwInA80B/4XPR+YbTth8CP3P3OXdXb01tKIiK9mruvAl4ihAuEVtKdwDejDhz7A8ea2f4JH6tz96Pd/Y5Wu/u1ux/i7uMJYXN6wro8dz8UuBL4rrs3AN8B7nT3CR0JJFAoiYj0Bomn8FpO3Z1vZq8Cs4F9gX0Stt9ZgBxvZi+a2VzghOhzLe6Knl8BRnW1UIWSiEjPdw8wycwOIrRw1gBXAZPcfX/CqbyihO03td6BmRUBNwDnuft+wO9afaY+em6iGxPIKpRERHo4d98IPEm4VnQ70JcQPOvMrBI4pQO7aQmglWZWCpzXgc9sAMo6U6tCSUSkd7gdOAC4w91fI5y2e4MQVP/a1YfdfS2hdTSX0PJ6uQPHfALYx8zmmNknO1Kket+JiEjGUEtJREQyhkJJREQyhkJJREQyhkJJusXM3Mz+nPA+z8xqzOz+OOsSkeykUJLu2gSMN7M+0fvJhCFF0s7MunxvRCeOkZvqY4j0ZgolSYaHgNOi1xeSMNCjmZWY2c1m9rKZzTazs6Llo8zsGTN7NXocGS0fYmZPR11Iq83sY9HyjQn7PM/Mbole32JmPzezJ4Afm9loM3vYzF6J9r9Xd7+cmW2MRkp+ETjCzC4ys5eiGm8ys1wzu8zMfpLwmU+b2a+i1ztsn7Df/zWz18zsheh+kZbvdF7i8RNefzX6Wb5uZt/r7ncTyTQKJUmGO4ALoju+9ycMxNjim8Dj7n4IYbDGn5pZCbACmOzuBwGfBH4Zbf8p4BF3n0C4p2JOB44/FjjR3b9CGNH5S+5+MOGO9R2G5zez46OAaP14bif7LwGq3f0wYFVU71FRjU3AvwHTgY8nfOaTwJ1mtvdOtm/Z7wvufgBhgMwvtPclzewkoAo4lDD68sFmdkz7PxqR5Ej8YymaDiMlEx+m/HSH9Hzu/no08vCFwIOtVp8EnGlmV0Xvi4ARwFLg12bW8ot6bLT+ZeBmM8sH7nH3joTS3929KbrL/Ejg72bWsq6wjXqfIPxS76gmYEb0ehJwMPBydIw+wAp3rzGzd83scGABMI5wQ+IVbW0f7asBaLn29grh1Gd7Tooes6P3pYSQeroT30UkoymUJFnuA64DjgMGJSw34Fx3n5e4sZldAywntIZygDoAd386+uv/NODPZvZTd/8TkHiXd+J4W7BtnK4cYG3UItkpMzse+L82VtW6+5FtLK9z96aE73Oru3+jje3uBM4nTBNwdzSkf3vbb/Ftd68njhfWGH0Xos8XJBz7R+5+U3vfT6Q1M7sHGE74f+cX7j4tOi18E+EMxhrgguiPqwnAb4Fi4B3gs+6+pp19Xwj8N+Hf5wPu/vXu1KpQkmS5GVjn7nPN7LiE5Y8AXzKzL0W/pA9099lAP2CJuzeb2SVAy3WWkcCH7v676DTfQcCfgOXRqbB5wDmEMbW24+7rzew9M/uEu/89+oW+fzSkSuJ2nW0pJZoJ3Gtm/+fuK8xsIFDm7h8QRkn+JvAB8PUObL8z7xNaV38DzgLyo+WPAD8ws7+6+0Yz250QbCva3o1kmlFXP3A9Xf+3tzNz3r/2tCt3sc1n3X111CHpZTObQTh9/Kq7f8XCPEnfBf6D8P/bl9z9KTP7frS8zf2b2VDgx4R/r2uAR83sbHe/p6tfRteUJCncfYm7/6KNVT8g/FJ93cyqo/cQrvVcYmYvEE7dtbR2jgPmmNls4FygZZ9XE051PQ581E4p/wZ8zsxeI4zrdVaXv1Qb3P1N4FuE//leBx4DhkTr1gBvAiPd/aVdbd+O3xHmt3kJOIzoZ+PujwK3Ac9bmDpgOp0c7FJ6rf+M/p94gdBiqgKa2TZFxV+Ao82sH9Df3Z+Klt8KtHfd8hDgSXevcfdG4K+72H6XNPadiEgPFp25+B/gJHevtTBL7DWEVnyhuzea2Z6E66bHAXPdfUT02dGEa7YHRT1eW2agfZLQkWgY8HF3//do+88B+7r7l7tar1pKIiI9Wz9gTRRIewGHR8tz2Db9xKeAZ919HbCm5VYM4GLgKXbuRUKrfnB0q8OFu9h+l3RNSUSkZ3sYuDQ6fTyPcAoPwmnhfc3sFWAd4dYFgEuA35pZMfAu8Jmd7djdPzKzbxCmqDDgQXe/tzvF6vSdiEgvZGYb3b007jpa0+k7ERHJGFnRUpoyZYo//PDDcZchItIZtutNpLWsaCmtXLky7hJERCQNsiKURESkd1AoiYhIxlAoiYhIxlAoiYhIp5nZg2bWfxfbfN/MTuzMfnXzrIiIdJq7n9qBbb7T2f2qpSQi0sOZ2bfN7G0ze8zMbjezq2wnszRHk/ndaGZPRHOEHWth9ui3ovHvWvb5fjS80Kho3e/M7A0zezQajXyHWZQ7Qi0lEZF0uaZfSqau4Jp1O526Ipoh9lzgQMLv/FcJk0pOAy519wVmdhhh5P4Too8NiF6fCfwDOAr4PGHaiwltTL5ZBVzo7l8ws79Fx/tLV76MQklEpGc7GrjX3TcDmNk/CJP9tTdL8z+i+c/mAsvdfW702TeAUUDrUHovIaheibbpEoWSiEi6tNOiSaG2RpbY1SzN9dFzc8Lrlvdt5UbiNk1An84WmViYiIj0XM8CZ5hZkZmVAqcBtcB7ZvYJAAsOiLPIFgolEZEezN1fBu4DXgPuAmYRpqpI6SzNXZUVA7JOnDjRZ82aFXcZHVO/ETYsg8Fj4q5EROKVMQOymlmpu2+M5kh6Gpjq7q/GXVdb1FJKtn9eAzceCeuXxl2JiEiLaWY2h9DzbkamBhKoo0NyNW2B6hnQVA//+iWccm3cFYmI4O6firuGjlJLKZneeQI2r4aBe8Irf4SNK+KuSEQkqyiUkql6BhT1gwtug6YGeO5XcVckIpJVFErJsmUzvH0/7H0GVOwN48+Dl/8Am1bFXZmISNZQKCXL/EegYWMII4CPfQW21MILN8Rbl4hIFlEoJUv1dCipgD2OCe8r9oJ9zoSXpsHmtfHWJiKSJRRKyVC3DuY/CvueAzm525Yf81WoXw8v3hRfbSIiWUShlAxvPxC6ge/XaoT23faDcaeGU3j1G+KpTUQkiyiUkmHudOg/AoYdsuO6Y74KdWvh5d+nvy4RkSyjUOquTSvh3Sdh/LlgbYwqsvtBMOZEeO7X0LAp7eWJiGQThVJ3vXE3eNO2XndtOeZrULsSXrklbWWJiGQjhVJ3Vc+A8r2gct+dbzPisNAr71+/hC116atNRCTLKJS6Y+1iWPR8aCW1deou0TFfg43LYPaf01ObiEgWUih1xxt3hefxH9/1tqOOhhFHwLPXQ2NDausSEclSCqXumDsdhh4Eg0bvelszOOYqWL8EXrst9bWJiGQhhVJXrVwAy17f8d6k9oyeFELsmZ+HaS5ERGQ7CqWumjsdsDCKQ0eZwbFfg7UfwNy/p6w0EZFspVDqCvfQ627kUdB3aOc+O3ZKGOnhmZ9Bc1Nq6hMRyVIpCyUzG2dmcxIe683sSjMbaGaPmdmC6HlAqmpImWWvw6oFsN+5nf+sWRjlYdXCcI+TiIhslbJQcvd57j7B3ScABwO1wN3A1cBMd68CZkbvs8vc6ZCTB/uc3bXP73UGlO8NT18Hzc3JrU1EJIul6/TdJOAdd/8AOAu4NVp+K9DF3+wxaW6G6rtg9AlQPLBr+8jJCT3xat4KEwOKiAiQvlC6ALg9el3p7h8BRM8VaaohORa/GLp1tzesUEfsew4MGgNP/zRcoxIRkdSHkpkVAGcCnepuZmZTzWyWmc2qqalJTXFdUT0d8opgr1O7t5+c3DA77bLXw6y1IiKSlpbSKcCr7r48er/czIYARM8r2vqQu09z94nuPrG8vDwNZXZAUyO8cU/oQVdY1v397fcJ6D8Snv6JWksiIqQnlC5k26k7gPuAS6LXlwD3pqGG5HjvyTDad2dumG1Pbj4c/V/w4SvwzuPJ2aeISBZLaSiZWTEwGbgrYfG1wGQzWxCtuzaVNSTV3BlQ2BfGTE7ePid8CvrurmtLIiKkOJTcvdbdB7n7uoRlq9x9krtXRc+rU1lD0mypCz3l9j4D8ouSt9+8QjjqyjDa+PvPJm+/IiJZSCM6dNSCR6F+fZhhNtkOuhhKK0NrSUSkF1ModVT1dCgphz2OTf6+8/vAkf8J7z0Fi19K/v5FRLKEQqkj6taHbtv7nA25eak5xsTPQPEgeOonqdm/bfYCuQAAIABJREFUiEgWUCh1xLwHobEueb3u2lJQAkf8Byx8DD58NXXHERHJYAqljpg7HfoNh2GHpvY4h34BivqHMfFERHohhdKubFoF7z4RhgXKSfGPq7AMDr8c5j0Ay6pTeywRkQykUNqVt+6F5sbUnrpLdNgXw71Q6oknIr2QQmlX5s6AQVWw2/7pOV6f/uE03pv3Qs289BxTRCRDKJTas34pfPCv0EoyS99xD78C8ot1bUlEeh2FUnuq7wK8+9NUdFbJIDjks+HeqFXvpPfYIiIxUii1p3o6DDkABo9J/7GP+BLkFsCzP0//sUVEYqJQ2plV78DS2elvJbUoq4SDPw2v3QFrPoinBhGRNFMo7cz/b+/O4+Qq6r2Pf37dsySZ6ck6SYcsBEIywyIEiEDYt7BvCgIqGHzQyKIXFPQCjz56r17FKygqoCIKERCBsATCTgSRRWACkQSyAoEkZF9nJpPZup4/6nTSmcwks3T36en5vl+vfnX3OX26fjVL/7rq1Kma87C/3+/z4cVwxFVgEXj1lvBiEBHJIiWl1jjnL5gdeTj0HR5eHGW7wYEXwTv3+kEXIiJ5TkmpNSvnwJr58JkMzAjeUUd+G1wCXv112JGIiGScklJrZk8Fi/oJWMPWbyQccCHMvBuqV+7y5SIi3ZmSUkvO+aHgo4+DkkFhR+Md+R1oboDXfxt2JCIiGaWk1NKSN2HjJ+GNumvNwNE+nrf+7OfiExHJU0pKLc2ZCgW9oPL0sCPZ3tHXQuNm+NdtYUciIpIxSkqpmpvgvUdhzEnQqyzsaLZXXgH7nA1v3AF168OORkQkI5SUUi1+GWpXZ29G8I46+rvQUO0Tk4hIHlJSSjXnYSiK+ZZSLorvBxWnw79u90u0i4jkGSWlpKZ6eP8Jfy6psHfY0bTtmO/Clg3w1p1hRyIiknZKSkmLXoD6jbnbdZe024Gw10R4/VZoqA07GhGRtFJSSpo9FXoPgD2PDTuSXTvme7B5LVTdFXYkIiJppaQEUF8D85+Gfc+BaGHY0ezaiENgj2Pgtd9AY13Y0YiIpI2SEviE1FSXWxfM7sox34OalfD2PWFHIiKSNkpK4C+YLRsGIyeEHUn77X6Ej/fVW/wgDRGRPKCktHkdLJoB+34OIt3ox2Hmr1vatAxm/TXsaERE0iKjn8Jm1s/MpprZPDOba2YTzGyAmT1vZguD+/6ZjGGX5j4OicbcH3XXmtHHw7CD/ZLpzY1hRyMi0mWZbhr8GnjGOVcJHADMBa4DZjjnxgAzgufhmT0VBoyGoeNCDaNTzODo78GGT2D2Q2FHIyLSZRlLSmZWBhwN/AnAOdfgnNsAnA1MCV42BQhv0aJNy2HxK76VZBZaGF0y9mSI7w//vBkSzWFHIyLSJZlsKe0JrAbuMrN3zOxOMysBhjjnlgME94NbO9jMJptZlZlVrV69OjMRvvco4LrXqLuWkueW1i4K6iMi0n1lMikVAAcBv3POHQjU0oGuOufcHc658c658eXl5ZmJcM5UiH8Gysdm5v2zpfIMGLwPvHwTJBJhRyMi0mmZTEpLgaXOuTeC51PxSWqlmQ0FCO5XZTCGtq37EJbN7N6tpKRIBI66BlbPhfceCTsaEZFOy1hScs6tAJaYWUWw6QTgfeBxYFKwbRIwLVMx7NSch/39fueGUnza7fs5f27pyWv8wAcRkW4o06PvvgXcZ2bvAuOAnwI3AhPNbCEwMXiefXMegRGHQb8RoRSfdpEofOFucAl46KvQ1BB2RCIiHZbRpOScmxWcF9rfOXeOc269c26tc+4E59yY4H5dJmNo1cr3YdX73fPapJ0ZOBrOvg2WVcHzPwg7GhGRDutGUxik0ZypYBG/vHi+2ecsOOwKeOP38N5jYUcjItIhPS8pOefPJ+1xDJS2Ohq9+zvxv2D4Z2HaN2HtB2FHIyLSbj0vKS2bCesX51/XXaqCIjjvLogWwIOTtLyFiHQbPS8pzZ4K0SJ/bU8+6zcCPv9HWDkbnv5e2NGIiLRLz0pKiWZ/Hc+Yk6B3v7CjybwxE/31S2//BWbdH3Y0IiK71LOS0uJX/MJ4+XJtUnscewOMOgqmf9uPOhQRyWE9KynNmQpFpTD2lLAjyZ5oAZx7JxTH4KFJful3EZEc1XOSUlMDvP84VJwGRX3Cjia7YnE4709+0tbpV/sRiCIiOajnJKUPZsCWDfk96m5n9jgajrvBr7tU9eewoxERaVXPSUqzp0Lv/rDncWFHEp4jr4G9JsIz18Gn74QdjYjIDnpGUmqohflP+RkcCorCjiY8kQh8/g4oGeyvX6rbEHZEIiLb6RlJaf7T0Lg5P5ap6Ko+A+ALd8GmZTDtSp1fEpGc0jOS0pyHITYUdj887Ehyw4hDYOKPYd50eP22sKMREdkq/5NS3XpY+Dzs+3m/vIN4h10Oe58JL/wQPnlj168XEcmC/E9Kc6dDohE+04MumG0PM7/MRd8R8NAlULsm7IhERHpAUpozFfrvAbsdFHYkuadXXzh/CmxeC498HRKJsCMSkR4uv5NS9Ur46GV/bZJZ2NHkpqEHwKk/hw/+Dv+8KexoRKSHy++k9P5jfnnwnjTXXWccfAnsfwG8+FP48KWwoxGRHiy/k9LsqTB4Xxi8d9iR5DYzOP2XMGgsPPw12LQ87IhEpIfK36S0/mNY+qYGOLRXcSmc/xd/ofHDl0JzU9gRiUgPlL9Jac7D/l5dd+03uBLOuAU+fhVe/EnY0YhID5TfSWn4Z6H/qLAj6V4OuMCfY3rlVzD/mbCjEZEeJj+T0oYlsGquphXqrFN+DvH94dFvwIZPwo5GRHqQ/ExK/UbANfNh3BfDjqR7Kuzlr19yCX9hbVND2BGJSA+Rn0kJoLTcXxwqnTNgTz/jw7KZ8Nz3w45GRHqI/E1K0nX7nAWHXQlv/gHeezTsaESkB1BSkp078Ud+wMi0b8GaRWFHIyJ5TklJdq6gCL5wN0QL4aFJ0FgXdkQikscympTMbLGZzTazWWZWFWwbYGbPm9nC4L5/JmOQNOg7HD7/R1g5B576btjRiEgey0ZL6Tjn3Djn3Pjg+XXADOfcGGBG8Fxy3ZgT4ahr4Z17YNZfw45GRPJUGN13ZwNTgsdTgHNCiEE647gbYNRRMP07sPL9sKMRkTyU6aTkgOfMbKaZTQ62DXHOLQcI7gdnOAZJl0gUzv0T9CqDB78C9dVhRyQieSbTSekI59xBwKnAlWZ2dHsPNLPJZlZlZlWrV6/OXITSMbEhPjGt+wCeuAqcCzsiEckjGU1KzrlPg/tVwKPAIcBKMxsKENyvauPYO5xz451z48vLyzMZpnTUHkfB8d/38wtW/SnsaEQkj2QsKZlZiZnFko+Bk4A5wOPApOBlk4BpmYpBMuiIb8OYk+CZ62HZ22FHIyJ5IpMtpSHAK2b2b+BN4Enn3DPAjcBEM1sITAyeS3cTicDn/gAlg/31S3Xrw45IRPKAuW5wTmD8+PGuqqoq7DCkNUvegrtOhTET4YJ7/WAIEQGwsAPojjSjg3TNiM/CyT+F+U/BE/8BiUTYEYlIN1YQdgCSBw6dDJvXwD9+DtFiOP1mMH1JFJGOU1KS9Dj2emiqh1dvgYJi33pSYhKRDsrLpJRIOJas30xpcQEDS4vDDqdnMPMzijfVw79uh2iRf67EJCIdkJfnlNbU1nPML15i2qxPww6lZzGDU34G4y/1LaaXNLBSRDomL1tK5aXFDCgpYv4KTYOTdWZw2k3QXA//uNEvfXHUNWFHJSLdRF4mJTOjYkiMeSuVlEIRicCZv4GmBpjx31DQCyZcGXZUItIN5GVSAqiIx3iwagmJhCMS0XmNrItE4ZzfQXMDPHuDP8d0yNfDjkpEclzeJqXKeIzNDc0sWb+Z3QeWhB1OzxQtgHPvhOZGeOpan5gOnrTr40Skx8rLgQ7gW0oA83ReKVzRQvjCXbDXRD+r+L//FnZE0t00NcCHL8HC56FGKwbku7xtKY0d4pPS/BXVnLxvPORoeriCYrjgHvjrBfDY5T5R7Xdu2FFJLmvYDB/MgLlPwIJnYMvGbfvKhsHQcbDbuG33pVqWLV/kbVIqKS5g5IA+GoGXKwp7wxfvh3vPg4e/7rvy9j4z7Kgkl9SthwXP+kS0aAY01UHv/lB5Jux9BhTH4NNZsHyWv5//FH4dUSC22/ZJaug4v/aXdDt5m5TAd+HNW7Ep7DAkqagEvvwg3PM5eOircOF9MPbksKOSMFWvhHnT/e2jlyHR5BPMQRdD5Rmw+xH+3GTSqCO3Pa6vhuXvbktSy2fB/KfZlqiG7tiiiqnXJNfldVKqjMf4+7xVbGlsplehZq/OCcUx+PJU+MvZ8MDFvvW01wlhRyXZtO4jn4TmToclbwAOBoyGCd+Evc+C3Q70lxXsSnEMRh3hb0n11bBidkqL6h3f/ZdMVKXxHVtUZUMzUUvppDxPSmU0JxyLVtWw37C+YYcjSb37wcWPwpQz4W9fhi8/5FezlfzkHKx63yehuU/Aytl+e3x/OO4G341bXpmeKamKY7D74f6WtEOimuW7CbcmqiGttKiGaoqskOR1UkqOwJu/olpJKdf0GQBfmQZ3n+4HQFz8CIw8LOyoJF0SCVg2E+Y94RPRug8B87/jk/7HnyPqPyo7sbSaqGp8okrt+lv0PLhg6ZWSwdsnqd2P8F+mJOPyOimNGtiHooII8zWzQ24qGQRfeRzuPs0PgPjKNBh+cNhRSWc1N8LHr/okNO9JqF4OkQLY4xg4/D+g4rTcGXxQXAq7T/C3pIbaHVtUi17wieqrT2+f1CRj8jopFUQjjBlcqmuVcllsSEpi+hxMegKGHhB2VNJejXXwwYvB0O2n/Qi6wj7+POHeZ8GYk7pPC6OoxLfkUlvsDbWwYg4M3T+8uHqYvE5K4LvwXl20JuwwZGf6DvPJ6K7T4C/nwCVPwpB9wo5K2rJlIyx4znfNLXwBGmuhV18Ye6o/PzT6eCjqE3aU6VFUAiMPDTuKHiXvk1JlPMYjby9jfW0D/UuKwg5H2tJvJEx6PEhMZ8ElT0H52LCjklRLZ8JLP/OzKyQa/QCBAy7054dGHeUvihbporxPShXxMsBPNzRh9MCQo5GdGrDnthbTlDPhq0/BwNFhRyUNm+HF//GLN5aUw2GX+Qtah3+2fUO3RTog7/+iKreOwNNFtN3CoDF+wENzA0w5C9Z/HHZEPduH/4DfTYDXb4WDL4FvVsFJP/FdWkpIkgF5/1c1OFZMvz6FGoHXnQzZxyemhmrfYtq4LOyIep66DfD4t3xXqkX8eb4zfgW9ysKOTPJc3ielrQv+aQRe9zJ0f3+Bbd16n5iqV4QdUc8x7ym4/TB451444iq4/LXtp/cRyaC8T0rgu/AWrKgmkXBhhyIdMexgPyVR9QrflZcLyxY0boElb8G/fudX1V33YdgRpU/Naj8n4d++CH0GwtdmwMT/9pPpimRJ3g90AD/YobahmWUb6hgxIE+GqvYUIw/1k7jeex7cc44fCNFnQHbKTiRg7SI/M8GyKlhaBSvn+ElDwXdrvfIr2O88OOoaGFyZnbjSzTl49wF45jp/Xc7x34cjrtZoOglFD0lK2xb8U1LqhkYd6Sdu/esFfobxr0zLzAWZ1SuDBBQkoWXvQH2wjk9RqZ8o9PBvwbDxvhVnET8A4K0/wewH/TU6R13rp6XpLjYsgelX+5kLhh8CZ98K5RVhRyU9mDmX+11a48ePd1VVVZ0+vqa+if1++CzXnjSWbx4/Jo2RSVYteA7+9iX/oX/xo35Os85qqIXl//atn2VVsOxt2LjE77MoDNnXJ57hQQIaNBYibcw0v3md78574w8+iY05ySenXL7oMpGAqj/BCz/yLaUTfwif/VrbdZTO0IyundDupGRmJc652gzH06quJiWAI3/+d8aN6MetXzooTVFJKOZOhwe/AiMOhYum+ivudyXRDKvn+RbQ0iABrXofXLPf32/kttbP8PF+9urOzEiwZSO8dSe8fhtsXusvKD36u7DH0bk14/SahX5k3Sevw57HwZm/hv67hx1VPsqhX3r3scukZGaHA3cCpc65kWZ2APAN59wV7SrALApUAcucc2eY2QDgAWAUsBg43zm3fmfvkY6k9LUpb/Hx2s08/51juvQ+kgPmPAIPX+q79b704PYn4p2DTZ8GrZ+ZfhaCT9/xU+GAnw5n2MHbktCwg6G0PL3xNdTCzLvh1d9AzQrfLXb0tb4FFWZyam6E134LL93of2an/AwO+GJuJcz8oh9sJ7TnnNKvgJOBxwGcc/82s6M7UMZVwFwgeYHDdcAM59yNZnZd8Pw/O/B+nVIRj/Hi/NXUNzVTXKAuim5tv8/7D9hHvwEPXOTP8yyb6VtAS6t8IgCIFPqh5Qd+eVsSGjg68x/CRSUw4UoYfynMug9euQX+er5vgR19rZ8NIdsXni7/N0y70s+Cvc/ZcOovcmfGbpEU7Rro4JxbYtv/Ize35zgzGw6cDvwP8J1g89nAscHjKcBLZCUp+QX/PlhVyz676QLAbu+AC6C53ndDLXrBbxsw2neVDR/vk1B8PygoDi/Gwl7w2UvhoK/A7Ifgnzf7rsdBFX603n7nbr/UdyY01sE/fu5bbSWD4Px7YJ+zMlumSBe05z9iSdCF58ysCPgPfMunPW4BvgeknpEe4pxbDuCcW25mg1s70MwmA5MBRo4c2c7i2rZ1uqGVm5SU8sVBwQd8QzXsdlD2hop3VLQQxn0J9r8A3n8MXr4ZHp0ML/0Ujvy270LLRPL8+HV4/Jt+WPu4i+Dkn0Dv/ukvRySN2tOHcBlwJTAMWAqMC57vlJmdAaxyzs3sTGDOuTucc+Odc+PLy7ve57/HoBIKo6aZHfLNyENhrxNzNyGlikR96+iyV+DC+6H3AHjiKvjNgX7kXmNdesqpr4Ynr4W7TvFzCF78KJxzmxKSdAu7bCk559YAX+7Eex8BnGVmpwG9gDIzuxdYaWZDg1bSUGBVJ967wwqjEUaXlzJfSUnCFolA5WlQcSp8+CK8fBM8/T14+Rcw4Zu+y6+zw90XPg9PXA2blsFhV8Bx/9evsirSTewyKZnZXcAOQ/Scc/9nZ8c5564Hrg/e41jgWufcRWb2C2AScGNwP63jYXdOZTzGGx+ty1ZxIjtn5hfEG308fPyaT04v/NDPEnHY5XDoN9rfuqldC89e72dmGFQBlz4HIw7JbPwiGdCe7rvpwJPBbQZ+FF1NF8q8EZhoZguBicHzrKiIl7F84xY2bm7MVpEi7bP74XDxI/D1v/uh7i/9DH71GX9x687m/HPOD5G/7RCY8zAc/T247J9KSNJttaf77uHU52Z2P/BCRwpxzr2EH2WHc24tcEJHjk+XyqHJwQ7VHLJHNzgHIT3PsIPhwvtg5Xt+tN6rv4Z//d6vZXT4t/zS8UmblsOT18D8J/0USGdN8yMORbqxzlwsMQbo+nC4EGjBP+k2huwL5/0ZrnzLD45464/wm3F+YMS6D2HmFLjtUPhgBkz8MVz6ghKS5IX2nFOqxp9TsuB+BVm4rigT4mW9KOtVoBF40n0M2suPnDv2P32r6e17/GwRALsfCWf9RkvGS15pT/ddF2a9zC1mRmW8TCPwpPvpNxJOv9lP9Drzbv/8gC9qSXLJO20mJTPb6cylzrm30x9O5lXEYzz2zjKcc5jm/JLupmwoHHd92FGIZMzOWko372SfA45PcyxZURGPUV3fxLINdQzvr7WVRERySZtJyTl3XDYDyZZtgx2qlZRERHJMu2aDNLP9gH3wMzMA4Jz7S6aCyqSxKavQnrC3ZkkWEckl7Rl990P8rN77AE8BpwKvAN0yKZX1KmRYv94a7CAikoPaM3TnPPzFriucc18FDgBCXA+g6yriMSUlEZEc1J6ktMU5lwCazKwMP4HqnpkNK7Mq4jE+WF1DQ1Mi7FBERCRFm0nJzG41syOAN82sH/BHYCbwNvBmluLLiMp4jKaE48M1XZnCT0RE0m1n55QWAjcBu+EnYL0fP4FqmXPu3SzEljEVKSPwKuNa8E9EJFe02VJyzv3aOTcBOBpYB9wFPA2cY2ZjshRfRuw5qJSCiBb8ExHJNbs8p+Sc+9g593Pn3IHAl4DPAfMyHlkGFRVowT8RkVy0y6RkZoVmdqaZ3YdvKS0Azs14ZBmmEXgiIrlnZwMdJprZn4GlwGT8NUqjnXMXOOcey1aAmVIRj7FsQx2btmjBPxGRXLGzltINwOvA3s65M51z9znnarMUV8YlpxtaoNaSiEjO6HFz3yVVpEw3NH6UVqEVEckFPXYxlmH9ehMrLtB5JRGRHNJjk5KZMVaDHUREckqPTUrgu/DmrdiEcy7sUEREhB6elPaOx9i0pYkVm7aEHYqIiNDDk1JFMMWQZnYQEckNPTspDdk2B56IiISvRyelvn0KGdq3l5KSiEiO6NFJCfxgh7nLN4UdhoiIoKS0dcG/xmYt+CciErYen5Qq4zEamx0frcmbGZRERLqtjCUlM+tlZm+a2b/N7D0z+69g+wAze97MFgb3/TMVQ3tUDNEIPBGRXJHJllI9cLxz7gBgHHCKmR0GXAfMcM6NAWYEz0MzenAJ0Ygxf4XOK4mIhC1jScl5NcHTwuDmgLOBKcH2KcA5mYqhPYoLouw5qEQj8EREckBGzymZWdTMZgGrgOedc28AQ5xzywGC+8FtHDvZzKrMrGr16tWZDDOYbkhJSUQkbBlNSs65ZufcOGA4cIiZ7deBY+9wzo13zo0vLy/PXJD4wQ5L19dRU9+U0XJERGTnsjL6zjm3AXgJOAVYaWZDAYL7VdmIYWeS0w2pC09EJFyZHH1Xbmb9gse9gROBecDjwKTgZZOAaZmKob2Sq9AqKYmIhKvNlWfTYCgwxcyi+OT3oHNuupm9DjxoZpcCnwBfyGAM7TKsX29KiqIagSciErKMJSXn3LvAga1sXwuckKlyOyMS8Qv+abCDiEi4evyMDkmV8RjzV1ZrwT8RkRApKQUqhsTYsLmRVdX1YYciItJjKSkFtOCfiEj4lJQC20bgabCDiEhYlJQC/UuKGBwrVktJRCRESkopKuIxXaskIhIiJaUUlfEYC1fV0KQF/0REQqGklKIyXkZDU4LFazeHHYqISI+kpJSiQtMNiYiESkkpxV6DS7Xgn4hIiJSUUvQqjDJqYB/mqqUkIhIKJaUWKuNl6r4TEQmJklILFfEYn6zbTK0W/BMRyTolpRaSgx0WrFRrSUQk25SUWtCCfyIi4VFSamFE/z70KYpquiERkRAoKbUQiRhjhmi6IRGRMCgptaJyiBb8ExEJg5JSKyriMdbVNrC6Rgv+iYhkk5JSKzTYQUQkHEpKrdAceCIi4VBSasXA0mIGlWrBPxGRbFNSakOlFvwTEck6JaU2VMRjLFhZTXNCI/BERLJFSakNFfEY9U0JPl5bG3YoIiI9hpJSGzQCT0Qk+5SU2jBmcAwzNNhBRCSLlJTa0LsoyqiBJWopiYhkkZLSTlQE0w2JiEh2ZCwpmdkIM3vRzOaa2XtmdlWwfYCZPW9mC4P7/pmKoasq4jEWr62lrqE57FBERHqETLaUmoBrnHN7A4cBV5rZPsB1wAzn3BhgRvA8J+09NIZzsHCVWksiItmQsaTknFvunHs7eFwNzAWGAWcDU4KXTQHOyVQMXVURLwM02EFEJFuyck7JzEYBBwJvAEOcc8vBJy5gcBvHTDazKjOrWr16dTbC3MHIAX3oVRhh3nIlJRGRbMh4UjKzUuBh4Grn3Kb2Huecu8M5N945N768vDxzAe5ENGKMHRJj/sp2hy0iIl2Q0aRkZoX4hHSfc+6RYPNKMxsa7B8KrMpkDF1VoVVoRUSyJpOj7wz4EzDXOffLlF2PA5OCx5OAaZmKIR0q4jHW1DSwRgv+iYhkXCZbSkcAFwPHm9ms4HYacCMw0cwWAhOD5zmrMhjsoNaSiEjmFWTqjZ1zrwDWxu4TMlVuuiUX/Ju3opoj9hoUcjQiIvlNMzrsQnmsmIElRcxfocEOIiKZpqTUDhVa8E9EJCuUlNrBL/hXQ0IL/omIZJSSUjtUxmPUNTbzybrNYYciIpLXlJTaQdMNiYhkh5JSO4wdUoqZhoWLiGSaklI79CkqYOSAPppuSEQkw5SU2qliSEzddyIiGaak1E6V8RiL19SypVEL/omIZIqSUjtVxMtIOFi0qibsUERE8paSUjulTjckIiKZoaTUTqMG9qGoIKLphkREMkhJqZ0KohHGDC5VS0lEJIOUlDpAc+CJiGSWklIH7B0vY1V1PetrG8IORUQkLykpdYAGO4iIZJaSUgdUbk1KGuwgIpIJSkodUB4rpn+fQp1XEhHJECWlDjAzKuKabkhEJFOUlDqoMl7GgpXVWvBPRCQDlJQ6qCIeY3NDM0vX14UdiohI3lFS6qAKDXYQEckYJaUOGjvEJyUNdhARST8lpQ4qLS5gxIDezFuppCQikm5KSp1QMaRMLSURkQxQUuqEyniMj9bUUt+kBf9ERNJJSakTKuIxmhNOC/6JiKSZklInJKcbUheeiEh6ZSwpmdmfzWyVmc1J2TbAzJ43s4XBff9MlZ9JowaVUBSNKCmJiKRZJltKdwOntNh2HTDDOTcGmBE873YKoxFGa8E/EZG0y1hScs69DKxrsflsYErweApwTqbKz7RKLfgnIpJ22T6nNMQ5txwguB/c1gvNbLKZVZlZ1erVq7MWYHtVxGOs2LSFjZsbww5FRCRv5OxAB+fcHc658c658eXl5WGHswNNNyQikn7ZTkorzWwoQHC/Ksvlp83WEXia2UFEJG2ynZQeByYFjycB07JcftrEy3pR1qtAgx1ERNIok0PC7wdeByrMbKmZXQrcCEw0s4XAxOB5t2RmVMY13ZCISDoVZOqNnXNfbGPXCZkqM9sq4jEee2cZzjnMLOxwRES6vZwd6NAdVA6NUV3fxLINWvBPRCQdlJSjaFswAAASLklEQVS6IDnYYd5ydeGJiKSDklIXbF3wTyPwRETSQkmpC2K9ChnWr7dG4ImIpImSUhf56YZ0Aa2ISDooKXVRRTzGh6traWhKhB2KiEi3p6TURRXxGE0JxwerteCfiEhXKSl1UWW8DNCCfyIi6aCk1EV7lpdQGDUNdhARSQMlpS4qjEYYXV6qwQ4iImmgpJQGFVrwT0QkLZSU0qAiHuPTjVvYWKcF/0REusKcc2HHsEuxWMwdfPDB2207//zzueKKK9i8eTOnnXbaDsdccsklXHLJJaxZs4bzzjtvh/2XX345F1xwAUuWLOHiiy/eYf8111zDmWeeyfz58/nGN76xw/7vf//7nHjiicyaNYtLJl/BvBXV7LtbX2K9/By3P/3pTzn88MN57bXXuOGGG3Y4/pZbbmHcuHG88MIL/OQnP9lh/x/+8AcqKip44oknuPnmm3fYf8899zBixAgeeOABfve73+2wf+rUqQwaNIi7776bu+++e4f9Tz31FH369OH222/nwQcf3GH/Sy+9BMBNN93E9OnTt9vXu3dvnn76aQB+/OMfM2PGjO32Dxw4kIcffhiA66+/ntdff327/cOHD+fee+8F4Oqrr2bWrFnb7R87dix33HEHAJMnT2bBggXb7R83bhy33HILABdddBFLly7dbv+ECRP42c9+BsC5557L2rVrt9t/wgkn8IMf/ACAU089lbq67ecuPOOMM7j22msBOPbYY2kpl/72rr766h32628vN/72AM3S3AlqKaVB7yKfiDY3NIUciYhI99YtWkrjx493VVVVYYfRJucc+//Xc5w9bjd+cs5nwg5HRHKDWkqdoJZSGpgZFUM02EFEpKuUlNKkIh5j3opqukPLU0QkVykppUllPEb1liaWb9wSdigiIt2WklKaVGi6IRGRLlNSSpOKYME/TTckItJ5Skpp0rdPIUP79tJ0QyIiXaCklEbJwQ4iItI5SkppVBGP8cHqGhqbteCfiEhnKCml0d7xMhqbHR+urg07FBGRbklJKY0q4snBDjqvJCLSGUpKaTS6vJSCiGlYuIhIJxWEHUA+KSqIsGd5SV4lpUTCsbmxmc31TdTUN1Fb3xzcN1Hb4J/X1jdR19hMU8KRSDianSPhgscJSDhHc3J7osVjRyvb/HP/Hmy3fdt+f1zCOUqKCxhUWsTAkmIGlBYxsKSIQaXFDAy2DSoton9JEYVRfQcTyXVKSmlWES/j5QWrueHR2RRGjMJohMKCyNbHBdEIhdFgezRCQdQoavG4YOv+4JhIhKICoyASvFfUKAweF0T8MZGIn/sxkXDUNfpEsbMksm2bf751W0MTm1OO2dzYTEdmTooYRMyIRIyoGdGIETGIRpKPt79P3b/9tuCxGWY+4e94vC+rpr6JTzdsYfayjaytaaAp0XrAfXsXMrC0iEElQcIKklbqfTK59e1duPVnKiLZo6SUZqfuF2fm4nU8994KGpsdjc0JmpodDRkekRcxKIhGaGxOtDuJ9C6MUlJcQGmxvy8pLqC8tJiSgQWUBs9LigsoKUq+LrktSklRQcq2KL0Lo0Qjhlm4H+TOOTZtaWJtTT1raxtYW1PPmpoG1tY0sK62njXBtkWranjjowbWb25o9ecVjRj9+wRJarukVcyAEt8a69u7kITzLcFkK7Ep2erb2qLzv/+dvqZ5W+swedvVa4oLIvTtXehvffx9Wa9CypLbgltRgVqH0r2EsnSFmZ0C/BqIAnc6527c2etzfemK9nDBh1IyQTU1J7YmrcbmBE0JR0OTv09ua2x2weu2f23LZNeU3JdIUFwQbVcS6VNUQFQtAZqaE2yoa2RtTZDAgqS1tqaBtbXJ+23bquszt2ZWaosymtJqjEYiRCNQEIkQiUDUjC2NCTbWNVLX2LzT9+xdGN2aoMp6FwT32yeuZEJLJrfkrVdhNGN17SH0D9YJWW8pmVkUuA2YCCwF3jKzx51z72c7lmwys6A7Dnqjf/ZcURCNMKi0mEGlxUBsl6/f0tjMutoG1tU2sLGuETOfLKIRfPIIkklB1HcxFkRSk0tKwom2SDxBl2dHNTQl2LSlkY11226bgtvGVm6fbtjC3OXVbKpr3GWCLQpaY2W9CrYmqlivQgqiyXpFtqtfQcp9JLL9ayJt7rfg57ez9/CvadkIT31uLT7/t9vX8riU1+64r/XjhvXrQ+8i/d9mQxjdd4cAi5xzHwKY2d+As4G8TkqSH3oVRtmtX29269c77FAAnzi2JdWOaWpOUL2lySeyLa0nsU11TVsT3JqaBj5aU7t912JKV2NTIkEigb/PsxVcpl42gfGjBoQdRo8QRlIaBixJeb4UOLTli8xsMjAZYOTIkdmJTKQHKYhG6F/iRyamW+ooypaJq9WElnLeLXkeLnk+LdntnXqqITXn7XgGwrW5b2fHuZ0ct8egknbXXbomjKTUWh/Fjn9Wzt0B3AH+nFKmgxKR9IlEjAi+u1qkI8IYmrMUGJHyfDjwaQhxiIhIjgkjKb0FjDGzPcysCLgQeDyEOEREJMdkvfvOOddkZt8EnsUPCf+zc+69bMchIiK5J5SLZ51zTwFPhVG2iIjkLl3uLSIiOUNJSUREcoaSkoiI5AwlJRERyRlKSiIikjOUlEREJGcoKYmISM5QUhIRkZwRyiJ/HWVmq4GPO3HoIGBNmsPJ5XLDLFt17hllq87tt8Y5d0q6g8l33SIpdZaZVTnnxveUcsMsW3XuGWWrzpJp6r4TEZGcoaQkIiI5I9+T0h09rNwwy1ade0bZqrNkVF6fUxIRke4l31tKIiLSjSgpiYhI7nDOhXIDRgAvAnOB94Crgu0DgOeBhcF9/2D7wOD1NcCtLd7rAuDd4H3+N2V7MfAAsAh4AxgVlPsOsAWoA5YGjy8KytsIVAfvNRUYmVLuv4P3ehc4qCPlBtvPD947WXYjcE5Q52VAfbB/GlAa1PkNoDm4XduZOqf8vD8JyqgH/gFYUPY/g5g2A48ARekqO+X3vDYoYwXwm5Tf80fBz/yD4Nh48Pot+GtD3gVeAw7IUp1nB/VdDVQBR2axzjXArcBngxjOy1Kd3wFcUOdZwP/Lcp0fDcp9L4g3G3VelPJ7nhM8HtDRsoN9/xu8fm5Q5+RpkT2C1y4Mji0KtvcFnsB/nrwHfDWsz+FcvIWZlIYCBwWPY8ACYJ/gF3xdsP064OfB4xLgSOAyUpJS8Af2CVAePJ8CnBA8vgL4ffD4wuAPo2W5i4ANwC+D8sqS5QbbfhCU+1v8BbwGHAbM7Ei5rdR5ZPCPcFBQ5x+m1Pmt4L4EOAP4Gf4D8trO1Dl4fCb+Hz8a/FPUAZOCst8NXnsd/gPq8nSVHdT5EuDVoNwFQRz3B+U9CPw1+Hn/Hrgq+Hn/L/DH4L1O7eTPuzN1nkjwNwbsD8zLYp0vA24D/o5fmfmSLNX5W8G+rv5fdabO3wbWASOD96vIUp23fpYEx/+9o3UOHh8e1Dka3F4Hjg32PQhcGDz+PXB58PgGtn2ulQf1Lwo7GeTKLfQAUv4JpuE/EOYDQ4NtQ4H5LV53SYt/ns8CL6Q8vxi4PXj8LDAheFyA/+ZtLd5vFjCjtXKB3wH/GWx7EXg25biPgZe7UO5kYEkbdd6QLDelzm+yLTF0uM7ABPwHe2+gD7Ae+D9B2WuD1w4N6vVsBsuejv/A+igobw0wPIhjQrLs1N8z0B9YleU63xocPzfLdf4ncCVwN/Cf2agzcCz+/6BL/1edrPNfgLfSWG5nfs9/Bb6eprKrgL2DfWuAguCY1DpfD9wevGYP/BfjSNifwblyy4lzSmY2CjgQ39Qd4pxbDhDcD97F4YuASjMbZWYF+O6wEcG+YfgPfpxzTfjug4Etyq3Ef4vZWi7wU2BMsO+3wbb++K6GpMVARWfKDVyC7xLYWmczuwv/4VCSUm5a6uycex2fWJfju1Yi+O7JOLDeOdcU1L9v8B6ZKHslcBr+C0h/fPflBufcUvzveWkbZV8KPJPFOh8EfBl4Ev/hlq069wP2xP89EsScrTrvBVxoZk+b2b5ZrHMcKDazl8xsJnBwFusMPsGcAjzcxTovD27POufm4v/fNwSvpUWdb8Unrk/x3cVXOecSCJADAx3MrBT/B3G1c25TR493zq3HN8kfwH/LXAwk/xCstUNSyp2G74N+rMV7fhX/RzcX38fc2ns14bu2OlRuUPZo/LeyK1PrHJS7G75b74Id3mHb6zpcZzPbC/+PUIHv118BjGuriAyUvV9Q7kX4rpNoW69PfWJmx+GT0rc7WW5n6vw2cB/+Q+nHWazzl4DXnHPNwfPaLNX5beAa4G/4L0OPZbHOEXyiOh04OYjjx1moc9Io4FXn3Lou/l8Nxyed483s6F3U+WT8l8/dgjhvNbOyNuLtcUJNSmZWiE9I9znnHgk2rzSzocH+ofhum51yzj3hnDvUOTcB32RfGOxaSvBNJ/jm0xdYl1Luh/i+4cY2yn0AODd4r3X4wQdJw4Nj211uSp2nA1XOuYda1hn/D7oqpdy01Bn4HL4b7i/APfgP3cPw/8D9zawgiGEj/htcOss+FxgN3OOc+yvwNL7fvwDoZ2bDgzoPb1H2QOBO4Gzn3Nps19k59zIw2swGZanOewAnm9li/CCH24FopuscfDGqDx4/BRRmsc7rgU+cc7XOuTXAy8C6LP6ex+DPexHUvzN/Y/9yztU452qCOh+G77rrF7yWFnX+KvCI8xbhuzgrESDEpGRmBvwJmOuc+2XKrsfxJykJ7qe1470GB/f98Sck72zlvc7Dn8wkWS6+n/n+1NcG33yS5Z6JP9EN/iRppXmH4f/Am9tbrnPOpdS5H/5kZ2qdv5NS5xUp5Xa5zs45hz+Be1nwvr8Fjgl+Bo/jR/6dFxy3nl38zDvx8z4N31X5myApHwO8Erz2RfwJ6Wls//segB/gcLFzbkG26hz8/pP1PAg/Wmttlur8XeAvzrlR+O6nK/AjDzNd53hKnQ/Bfy5kq85vA0ODxNEHOBTf/ZeNv+3e+NbN1m2d/Bs7Jog/Wee5wb4Xg9fSos6fACcE5QzBt/A+RLx0nJjqzA3ftHf40TGzgttp+G/HM/DfUGYAA1KOWYz/dlKD/+ayT7D9fuD94HZhyut7AQ/h+4rfxPfXJ8udCzS0Um5d8P5z8d+4ylLKbcA35xcA4ztSbos6N7ao8yD84Ib6oOyHgLLgmCVAIjgugU9YZZ0o++jgPbYEt1Up9X6VbcNmHwOK01V2Sp3XppT9SMrP+yN8gv8wOLY4+HlvCY5rCH4XVVmq87rgd9wc/D4u6sLfWEfrnPq3/Sj+Ay0bdV7bos5fynKd6/H/EwuBq7NU58XBz7qRTn6WBNujwB/wf6PvA79MOWbP4LWLknUOtu8GPIc/nzSH4G9MN3/TNEMiIpIzQh/oICIikqSkJCIiOUNJSUREcoaSkoiI5AwlJRERyRlKSpJTzGygmc0KbivMbFnwuMbMbs9gucea2eGZen8RaZ+CXb9EJHucc2sJpogxsx8BNc65m7JQ9LH461Zey0JZItIGtZSkWwhaMtODxz8ysylm9pyZLTazz5vZ/5rZbDN7JriyHjM72Mz+YWYzzezZlGmk/sPM3jezd83sb+Yn5r0M+HbQKjvKzM40szfM7B0zeyG48r4jZS82s5+b2ZvBba/W6iUi21NSku5qNH4Sz7OBe4EXnXOfwc/IcXqQHH4LnOecOxj4M/A/wbHXAQc65/YHLnPOLcbPzP0r59w459w/8dPjHOacOxA/Uen32lt2yus2OecOwc8KfUu6fwAi+Ujdd9JdPe2cazSz2fipXp4Jts/Gz/xcgZ+x+nk/5SBR/NIC4Ke2us/MHqPFDPEphgMPBK2rIvw0Oe0tO+n+lPtfdaKOIj2OWkrSXSVntU4AjW7bfFkJ/JctA94LWj7jnHOfcc6dFLzmdPwKrwcDM1Nmck71W/yid58BvoGf+6y9ZSe5Nh6LSBuUlCRfzQfKzWwC+CVDzGxfM4sAI5xzL+K75PrhlySpBmIpx/fFzzAN22aH7qgLUu5f7+R7iPQo6r6TvOScazCz8/DLKPTF/63fgp/h/d5gm+HPI20wsyeAqWZ2NvAt4EfAQ2a2DPgXfq2jjio2szfwX/6+2OVKifQAmiVcJAOChfrGO79wnYi0k7rvREQkZ6ilJCIiOUMtJRERyRlKSiIikjOUlEREJGcoKYmISM5QUhIRkZzx/wGWH0pD5EsrSQAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"e.monitor_plot();"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this example, the loss of the 'apollo' variant is below the threshold after a few days and continues to stay below. We decide to stop an experiment with a result if a variant is below the threshold for a consecutive number of days:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Timestamp
\n",
"
Loss apollo
\n",
"
Loss gemini
\n",
"
Runs apollo
\n",
"
Runs gemini
\n",
"
Max loss apollo
\n",
"
Max loss gemini
\n",
"
Stop apollo
\n",
"
Stop gemini
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
20190730
\n",
"
48.266853
\n",
"
51.491613
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
False
\n",
"
False
\n",
"
\n",
"
\n",
"
1
\n",
"
20190731
\n",
"
1.069647
\n",
"
75.996100
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
False
\n",
"
False
\n",
"
\n",
"
\n",
"
2
\n",
"
20190801
\n",
"
0.717000
\n",
"
59.209678
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
False
\n",
"
False
\n",
"
\n",
"
\n",
"
3
\n",
"
20190802
\n",
"
1.208869
\n",
"
48.692807
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
NaN
\n",
"
False
\n",
"
False
\n",
"
\n",
"
\n",
"
4
\n",
"
20190803
\n",
"
1.305198
\n",
"
40.086982
\n",
"
4.0
\n",
"
0.0
\n",
"
48.266853
\n",
"
75.996100
\n",
"
False
\n",
"
False
\n",
"
\n",
"
\n",
"
5
\n",
"
20190804
\n",
"
0.598810
\n",
"
42.075643
\n",
"
5.0
\n",
"
0.0
\n",
"
1.305198
\n",
"
75.996100
\n",
"
True
\n",
"
False
\n",
"
\n",
"
\n",
"
6
\n",
"
20190805
\n",
"
0.677079
\n",
"
37.922837
\n",
"
5.0
\n",
"
0.0
\n",
"
1.305198
\n",
"
59.209678
\n",
"
True
\n",
"
False
\n",
"
\n",
"
\n",
"
7
\n",
"
20190806
\n",
"
0.154403
\n",
"
43.471300
\n",
"
5.0
\n",
"
0.0
\n",
"
1.305198
\n",
"
48.692807
\n",
"
True
\n",
"
False
\n",
"
\n",
"
\n",
"
8
\n",
"
20190807
\n",
"
0.052977
\n",
"
45.669064
\n",
"
5.0
\n",
"
0.0
\n",
"
1.305198
\n",
"
45.669064
\n",
"
True
\n",
"
False
\n",
"
\n",
"
\n",
"
9
\n",
"
20190808
\n",
"
0.037551
\n",
"
44.192609
\n",
"
5.0
\n",
"
0.0
\n",
"
0.677079
\n",
"
45.669064
\n",
"
True
\n",
"
False
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Timestamp Loss apollo Loss gemini Runs apollo Runs gemini \\\n",
"0 20190730 48.266853 51.491613 NaN NaN \n",
"1 20190731 1.069647 75.996100 NaN NaN \n",
"2 20190801 0.717000 59.209678 NaN NaN \n",
"3 20190802 1.208869 48.692807 NaN NaN \n",
"4 20190803 1.305198 40.086982 4.0 0.0 \n",
"5 20190804 0.598810 42.075643 5.0 0.0 \n",
"6 20190805 0.677079 37.922837 5.0 0.0 \n",
"7 20190806 0.154403 43.471300 5.0 0.0 \n",
"8 20190807 0.052977 45.669064 5.0 0.0 \n",
"9 20190808 0.037551 44.192609 5.0 0.0 \n",
"\n",
" Max loss apollo Max loss gemini Stop apollo Stop gemini \n",
"0 NaN NaN False False \n",
"1 NaN NaN False False \n",
"2 NaN NaN False False \n",
"3 NaN NaN False False \n",
"4 48.266853 75.996100 False False \n",
"5 1.305198 75.996100 True False \n",
"6 1.305198 59.209678 True False \n",
"7 1.305198 48.692807 True False \n",
"8 1.305198 45.669064 True False \n",
"9 0.677079 45.669064 True False "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"e.monitor_decision(days=5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Following this rule, we could have stopped the experiment already on `2019-08-04`. We can access the last model of the experiment and do the same analysis as already shown in the other example notebooks:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"